3.398 \(\int \frac{\cos (c+d x) (B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=127 \[ -\frac{(5 B-C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{2 B \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{a^{3/2} d}-\frac{(B-C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

(2*B*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) - ((5*B - C)*ArcTan[(Sqrt[a]*Tan[c +
 d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((B - C)*Tan[c + d*x])/(2*d*(a + a*Sec[c +
 d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.269656, antiderivative size = 127, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.15, Rules used = {4072, 3922, 3920, 3774, 203, 3795} \[ -\frac{(5 B-C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{2 B \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{a^{3/2} d}-\frac{(B-C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*B*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) - ((5*B - C)*ArcTan[(Sqrt[a]*Tan[c +
 d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((B - C)*Tan[c + d*x])/(2*d*(a + a*Sec[c +
 d*x])^(3/2))

Rule 4072

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 3922

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> -Simp[((b
*c - a*d)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(b*f*(2*m + 1)), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e
+ f*x])^(m + 1)*Simp[a*c*(2*m + 1) - (b*c - a*d)*(m + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f},
 x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 3920

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rubi steps

\begin{align*} \int \frac{\cos (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx &=\int \frac{B+C \sec (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\\ &=-\frac{(B-C) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac{\int \frac{-2 a B+\frac{1}{2} a (B-C) \sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac{(B-C) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{B \int \sqrt{a+a \sec (c+d x)} \, dx}{a^2}-\frac{(5 B-C) \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac{(B-C) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac{(2 B) \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a d}+\frac{(5 B-C) \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{2 a d}\\ &=\frac{2 B \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac{(5 B-C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{(B-C) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 1.57632, size = 147, normalized size = 1.16 \[ \frac{\csc (c+d x) \left (2 (C-B) \sin ^2\left (\frac{1}{2} (c+d x)\right )-\sqrt{2} (5 B-C) \cos ^2\left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)-1} \tan ^{-1}\left (\frac{\sqrt{\sec (c+d x)-1}}{\sqrt{2}}\right )+8 B \cos ^2\left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)-1} \tan ^{-1}\left (\sqrt{\sec (c+d x)-1}\right )\right )}{2 a d \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(Csc[c + d*x]*(8*B*ArcTan[Sqrt[-1 + Sec[c + d*x]]]*Cos[(c + d*x)/2]^2*Sqrt[-1 + Sec[c + d*x]] - Sqrt[2]*(5*B -
 C)*ArcTan[Sqrt[-1 + Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^2*Sqrt[-1 + Sec[c + d*x]] + 2*(-B + C)*Sin[(c + d
*x)/2]^2))/(2*a*d*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.234, size = 552, normalized size = 4.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x)

[Out]

1/4/d/a^2*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(-4*B*cos(d*x+c)*2^(1/2)*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1
))^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))-5*B*sin(d*x+c)*cos(d*
x+c)*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+
1))^(1/2)-4*B*2^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*(-2*cos(
d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+C*sin(d*x+c)*cos(d*x+c)*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d
*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-5*B*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1
/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+C*ln(((-2*cos(d*x+c)/
(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+2*B
*cos(d*x+c)^2-2*C*cos(d*x+c)^2-2*B*cos(d*x+c)+2*C*cos(d*x+c))/(cos(d*x+c)+1)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \cos \left (d x + c\right )}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*cos(d*x + c)/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 7.92313, size = 1416, normalized size = 11.15 \begin{align*} \left [-\frac{4 \,{\left (B - C\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \sqrt{2}{\left ({\left (5 \, B - C\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (5 \, B - C\right )} \cos \left (d x + c\right ) + 5 \, B - C\right )} \sqrt{-a} \log \left (\frac{2 \, \sqrt{2} \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 8 \,{\left (B \cos \left (d x + c\right )^{2} + 2 \, B \cos \left (d x + c\right ) + B\right )} \sqrt{-a} \log \left (\frac{2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right )}{8 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac{2 \,{\left (B - C\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \sqrt{2}{\left ({\left (5 \, B - C\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (5 \, B - C\right )} \cos \left (d x + c\right ) + 5 \, B - C\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) + 8 \,{\left (B \cos \left (d x + c\right )^{2} + 2 \, B \cos \left (d x + c\right ) + B\right )} \sqrt{a} \arctan \left (\frac{\sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right )}{4 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(4*(B - C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - sqrt(2)*((5*B - C)*cos(d*
x + c)^2 + 2*(5*B - C)*cos(d*x + c) + 5*B - C)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(
d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos(d*x +
 c) + 1)) + 8*(B*cos(d*x + c)^2 + 2*B*cos(d*x + c) + B)*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sqrt((a*
cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)))/(a^2*d*co
s(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(2*(B - C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x
+ c)*sin(d*x + c) - sqrt(2)*((5*B - C)*cos(d*x + c)^2 + 2*(5*B - C)*cos(d*x + c) + 5*B - C)*sqrt(a)*arctan(sqr
t(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) + 8*(B*cos(d*x + c)^2 + 2*B*
cos(d*x + c) + B)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))))
/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (B + C \sec{\left (c + d x \right )}\right ) \cos{\left (c + d x \right )} \sec{\left (c + d x \right )}}{\left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((B + C*sec(c + d*x))*cos(c + d*x)*sec(c + d*x)/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [B]  time = 11.0498, size = 417, normalized size = 3.28 \begin{align*} -\frac{\frac{\sqrt{2}{\left (5 \, B - C\right )} \log \left ({\left (\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{\sqrt{-a} a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} + \frac{8 \, B \log \left ({\left |{\left (\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - a{\left (2 \, \sqrt{2} + 3\right )} \right |}\right )}{\sqrt{-a} a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} - \frac{8 \, B \log \left ({\left |{\left (\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + a{\left (2 \, \sqrt{2} - 3\right )} \right |}\right )}{\sqrt{-a} a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} - \frac{2 \,{\left (\sqrt{2} B a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right ) - \sqrt{2} C a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )\right )} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{3}}}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-1/8*(sqrt(2)*(5*B - C)*log((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/(sqrt(-a)
*a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) + 8*B*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c
)^2 + a))^2 - a*(2*sqrt(2) + 3)))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) - 8*B*log(abs((sqrt(-a)*tan(1/2
*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2
*c)^2 - 1)) - 2*(sqrt(2)*B*a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1) - sqrt(2)*C*a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1))*sq
rt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*tan(1/2*d*x + 1/2*c)/a^3)/d